Skip to main content

New story in Health from Time: Genetic Mutations In Father’s Sperm Can Predict Children’s Autism Risk



There’s no question that autism can be traced to a combination of genetic and environmental factors. One genetic contributor in particular has in recent years intrigued scientists studying autism: DNA mutations originating in fathers’ sperm.

Studies have linked autism risk to de novo mutations, or changes in DNA that arise spontaneously in sperm as the germline cell develops, or in the embryo after fertilization. Researchers estimate that such mutations might be involved in anywhere from 10% to 30% of autism cases, and that the older a father is at the time of conception, the higher the chance his sperm will result in de novo mutations that can contribute to autism spectrum disorder. In fact, with every decade of life, the number of de novo mutations in sperm doubles.

In a new study published in Nature Medicine, researchers led by a team at the University of California, San Diego (UCSD) set out to determine if they could match specific disease-causing genetic mutations in the DNA of children with autism to the same mutations in their fathers’ sperm.

The team analyzed DNA from eight sets of fathers and children. In the children, they looked for a phenomenon called mosaicism, which are genetic differences even among cells from the same person. Each time a cell divides, the process can generate mutations, or genetic mistakes—some can be harmful (for example, some can lead to cancer), but most are not because they occur outside of important genes in what are known as “DNA deserts.”

The researchers then matched these changes found in the children to those found in their fathers’ sperm. That confirmed that the de novo mutations were indeed playing some role in contributing to autism.

The researchers also determined what percentage of sperm produced by the father contained these de novo mutations. This knowledge, say the study authors, could potentially lead to a test that can help fathers of children with autism to know how likely they are to have another child affected by the condition. Eventually, the genetic test could also tell parents-to-be if they are at increased risk of having a child with autism. The DNA sequencing technology used is basically the same as used for whole genome sequencing, and the price for that continues to drop, so this wouldn’t be an especially expensive tool.

Currently around 165 genetic mutations have been linked to autism, and conducting a deep analysis of a potential father’s sperm for some of these aberrations could let him know if he is at higher or lower risk of fathering a child who might be affected by autism. (The list of implicated genes continues to grow at a rapid pace, and at the time of the study, the scientists worked with a smaller number of culprit genetic variants). In some of the eight fathers in the study, up to 10% of their sperm carried mutations; if these men decided to have more children, they would have the option of choosing whether they wanted to take measures to reduce the risk their children would be affected. Some, for example, might use IVF so they could screen their embryos for the mutations.

“The point of this is not to eradicate autism,” says Jonathan Sebat, director of the Beyster Institute for Psychiatric Genomics at UCSD, and one of the authors of the new paper. “That is not the goal of this; that is not the point. The point is to inform parents of their risk so they can make their own decisions based on that knowledge.”

The next step is to better understand how de novo mutations function over time. Joseph Gleeson, professor of neuroscience at UCSD and Rady Children’ Institutes for Genomic Medicine and senior author of the paper, says that he and his team have launched another study to explore just that. They recruited male students and faculty from UCSD of varying ages and are sequencing their sperm at different periods of time to track the stability of the mutations.

This line of research could eventually make deep genetic sequencing of sperm commonplace in the family-planning process. Not only could it help parents-to-be make better-informed decisions about their future children’s risk for not only autism, but other conditions believed to be connected to de novo mutations as well, like schizophrenia, epilepsy, and neurodegenerative diseases.

Popular posts from this blog

New story in Health from Time: Here’s How Quickly Coronavirus Is Spreading in Your State

The novel coronavirus pandemic is a global crisis, a national emergency and a local nightmare. But while a great deal of the focus in the U.S. has been on the federal government’s response, widely criticized as slow and halting , the picture on the ground remains very different in different parts of the country. A TIME analysis of the per capita spread of the epidemic in all 50 states and Washington, D.C. found considerable range in the rate of contagion, and, in some parts of the country, a significant disparity compared to the national figure. The U.S., unlike nations such as South Korea and now Italy , has yet to show signs of bringing the runaway spread of the virus under control. However, while no single state is yet showing strong signs of bending the curve , some are faring much worse than others. The following graphic plots the rise in the total confirmed cases of COVID-19 per 100,000 residents in each state, plotted by the day that each state reported its first case.

New story in Health from Time: We Need to Take Care of the Growing Number of Long-term COVID-19 Patients

On July 7, 2020, the Boston Red Sox pitcher Eduardo Rodriguez tested positive for the new coronavirus. He was scheduled to start Opening Day for the Sox, but the virus had other plans— damaging Rodriguez’s heart and causing a condition called myocarditis (inflammation of the heart muscle). Now the previously fit 27-year old ace left-hander must sit out the 2020 season to recover. Rodriguez is not alone in having heart damage from SARS-CoV-2, the virus that causes COVID-19. In a new study done in Germany, researchers studied the hearts of 100 patients who had recently recovered from COVID-19. The findings were alarming: 78 patients had heart abnormalities, as shown by a special kind of imaging test that shows the heart’s structure (a cardiac MRI), and 60 had myocarditis. These patients were mostly young and previously healthy . Several had just returned from ski trips. While other studies have shown a lower rate of heart problems—for example, a study of 416 patients hosp

New story in Health from Time: What We Don’t Know About COVID-19 Can Hurt Us

Countries around the world have introduced stringent control measures to stop COVID-19 outbreaks growing, but now many find themselves facing the same situation again. From Melbourne to Miami, the relaxation of measures had led to increasing flare-ups, which in some places has already meant reclosing schools, businesses or travel routes. Within the U.S. and among different countries , places with wildly varying public-health policies have experienced wildly diverse outcomes. Most ominously, infections are rising rapidly in many places where they once were falling. So how do countries avoid an indefinite, unsustainable, cycle of opening and closing society? What is needed to prevent a future of strict social distancing and closed borders? To escape this limbo, we need to know more about each step in the chain of infection: why some people are more susceptible or have more symptoms, how our interactions and surroundings influence risk, and how we can curb the impact of the re