Skip to main content

New story in Health from Time: How Remdesivir Works to Fight COVID-19 Inside the Body



On May 1, the U.S Food and Drug Administration issued an emergency-use authorization of remdesivir, an experimental anti-viral drug. With this clearance, doctors in the U.S. are now allowed to use the drug to treat patients with severe cases of COVID-19.

Remdesivir isn’t new. It was initially developed to treat Ebola and was also tested in the lab against SARS and MERS—two other coronaviruses that infect humans much like the virus that causes COVID-19. It never made it to the approval stage for those uses, but over the last four months, scientists desperate for options to help mitigate the coronavirus pandemic have been looking towards old drugs that could be repurposed. Remdesivir has in that time traveled an unprecedented path to regulatory approval, becoming one of the most promising therapies against COVID-19 to date.

Remdesivir isn’t a vaccine, and so it can’t prevent infection; instead, it works by attacking the virus once it is already spreading inside the body. Here is a look at how the COVID-19 virus propagates in the human body, and how the drug puts the brakes on that process.

STEP 1: Virus enters a cell

Viruses can’t multiply without using a cell’s protein-making machinery. So they first need to gain entry into a healthy cell. Coronaviruses, like the one that causes COVID-19, have a shell of spiky proteins that allow them to bind to cells.

STEP 2: Virus releases genetic code

The virus fuses with the cell and, once inside, releases a strand of RNA. Like a blueprint, RNA is a string of genetic code that has instructions to make exact copies of the virus.

STEP 3: Genetic code converts to proteins

Tiny particles in the host cell, called ribosomes, are equipped to read genetic material. When the virus’s RNA passes through the ribosome, the ribosome produces viral proteins.

STEP 4: Proteins make copies

Viral proteins are needed to make copies of the viral RNA, as well as other parts of the virus like the outer spikes and membrane. As more proteins and RNA strands are made, they proliferate, making exponentially more copies that fill up the cell.

STEP 5: Viral parts get assembled

The viral parts use mechanisms in the host cell to come together, forming a complete virus. When fully assembled, the virus can exit the cell to seek other healthy cells and start the process again.

STEP 6: Remdesivir blocks replication

Remdesivir mimics a part of the viral RNA. During the copying process, it inserts itself into the RNA strand. When attached, the drug prevents any further copying, leaving the RNA strand incomplete and unable to produce critical viral parts.

STEP 7: Virus slows down

Hampered by the drug, the entire replication process slows down. This means fewer viruses are assembled. Defective viruses with partial RNA can’t replicate in other cells.

Popular posts from this blog

New story in Health from Time: Here’s How Quickly Coronavirus Is Spreading in Your State

The novel coronavirus pandemic is a global crisis, a national emergency and a local nightmare. But while a great deal of the focus in the U.S. has been on the federal government’s response, widely criticized as slow and halting , the picture on the ground remains very different in different parts of the country. A TIME analysis of the per capita spread of the epidemic in all 50 states and Washington, D.C. found considerable range in the rate of contagion, and, in some parts of the country, a significant disparity compared to the national figure. The U.S., unlike nations such as South Korea and now Italy , has yet to show signs of bringing the runaway spread of the virus under control. However, while no single state is yet showing strong signs of bending the curve , some are faring much worse than others. The following graphic plots the rise in the total confirmed cases of COVID-19 per 100,000 residents in each state, plotted by the day that each state reported its first case.

New story in Health from Time: We Need to Take Care of the Growing Number of Long-term COVID-19 Patients

On July 7, 2020, the Boston Red Sox pitcher Eduardo Rodriguez tested positive for the new coronavirus. He was scheduled to start Opening Day for the Sox, but the virus had other plans— damaging Rodriguez’s heart and causing a condition called myocarditis (inflammation of the heart muscle). Now the previously fit 27-year old ace left-hander must sit out the 2020 season to recover. Rodriguez is not alone in having heart damage from SARS-CoV-2, the virus that causes COVID-19. In a new study done in Germany, researchers studied the hearts of 100 patients who had recently recovered from COVID-19. The findings were alarming: 78 patients had heart abnormalities, as shown by a special kind of imaging test that shows the heart’s structure (a cardiac MRI), and 60 had myocarditis. These patients were mostly young and previously healthy . Several had just returned from ski trips. While other studies have shown a lower rate of heart problems—for example, a study of 416 patients hosp

New story in Health from Time: What We Don’t Know About COVID-19 Can Hurt Us

Countries around the world have introduced stringent control measures to stop COVID-19 outbreaks growing, but now many find themselves facing the same situation again. From Melbourne to Miami, the relaxation of measures had led to increasing flare-ups, which in some places has already meant reclosing schools, businesses or travel routes. Within the U.S. and among different countries , places with wildly varying public-health policies have experienced wildly diverse outcomes. Most ominously, infections are rising rapidly in many places where they once were falling. So how do countries avoid an indefinite, unsustainable, cycle of opening and closing society? What is needed to prevent a future of strict social distancing and closed borders? To escape this limbo, we need to know more about each step in the chain of infection: why some people are more susceptible or have more symptoms, how our interactions and surroundings influence risk, and how we can curb the impact of the re